
Chapter 14. Beam Dynamics

14.1. Space charge and beam stability

K.Y. Ng

14.1.1. Tune shifts

Thebetatron tunesνz, z = x ory, of transverse oscillations of charged particles in the beam
moving with axial velocityv = βc, c being the velocity of light, are mainly determined
by the applied focusing forces due to quadrupoles. With finite beam current the tunes
are shifted, both by direct space charge and by image forces due to induced voltages in
the surrounding structure impedances. Due to the relativistic nature of the beam,γ =
(1 − β2)−1/2 = 8.939 even at injection, the space charge forces are reduced as a result of
the compensation of the electric and magnetic components.

Thecoherentandincoherent tune shiftsof a beam with half widthax and half heightay

consisting ofNp protons are [1]
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whererp is the classical radius,Bf is the bunching factor, andR is the mean radius of the
accelerator ring. Thecoherent Laslett image coefficientsξ1,2z andincoherent Laslett image
coefficientsε1,2z describe the strength of image forces for a particular geometry. For the
elliptical vacuum chamber of the Main Injector with full height2h=5.08 cm and full width
2w=12.3 cm, they areξ1x =0.0049, ξ1y =0.6114, ε1x =−ε1y =−0.2032. The magnet pole
gaps are approximated by two infinite plates separated by2g = 5.31 cm coveringF = 0.5

of the ring, givingε2x = ε2y = −π2/24. Assuming a uniform transverse distribution, the
self-field space charge coefficients in the last term in Eq. (14.2) areεspch,y = ay/(ax+ay)

andεspch,x = a2
y/[ax(ax+ay)]. The tune shifts are calculated at every moment of the ramp

cycle according to the rf voltage table for the NuMi cycle and are plotted in Fig. 14.1. The
bunching factorBf is also shown in a different scale. It is computed from the bunch area
which is assumed to be 0.15 eV-s throughout the cycle. The beam radii are computed from
the 95% normalized emittance ofεN95% =40×10−6 πm. We see a dip for every curve at the
time when transition is crossed. Because of bunch-by-bunch injection, all the tune shifts
have their maximal values near injection. At their maximal values, we can write

∆νincoh,x =−0.059 + 0.113=−0.054 , ∆νincoh,y =−0.060 − 0.117=−0.178 , (14.3)
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Figure 14.1. (color) Coherent and incoherent betatron tune shifts of the upgraded Main
Injector.

where the first terms in the middle correspond to self-force contributions and the second
image contributions. It is obvious that space charge contributions, denoted byνself,x and
νself,y in the figure, are not so dominating. Here, the coherent tune shifts have their max-
imal values∆νincoh,x = +0.110 and∆νincoh,y = −0.124. It is well-known that only the
coherent tune shifts are responsible for parametric resonances [2]. Although the space
charge self-force does not contribute to the dipole coherent tune shifts, it contributes to the
quadrupole coherent tune shifts. The symmetric coherent quadrupole mode will be shifted
by 2 × 3

4
of the incoherent dipole shift, orνquad = 2

[
νdipole − 3

4
|∆νincoh|

]
. Therefore,

2νx is shifted from 2 × 26.425 to 2 × 26.494 and 2νy is shifted from 2 × 25.415 to 2 ×
25.253. With the bare tunesνx = 26.425 andνy = 25.415, the vertical tune will pass
through the third order stopband.

14.1.2. Single Bunch Instability

Keil-Schnell limit for longitudinal microwave instability is [3]∣∣∣∣∣Z‖
0
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whereIpk is the peak current,η is the slip factor,E0 is the nominal beam energy, and
the energy spread∆E at FWHM is computed according to a parabolic distribution. The
form factorF‖ is near unity for the real and inductive parts of the impedance, but is large
for the capacitive part of the impedance. The stability limit is depicted in the left plot of
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Figure 14.2.Longitudinal microwave instability limit for the upgraded Main Injector.

Fig. 14.2. Alongside, we also show the space charge impedance of the beam inside the
elliptical vacuum chamber. The longitudinal resistive-wall impedance is

Z
‖
0
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wall

= [1 − i sgn(ω)]
ρR

hδs
Fwall
‖ , (14.5)

whereδskin is the skin depth for resistivityρ andFwall
‖ = 0.927 is a form factor which takes

care of the fact that the beam pipe cross section is elliptical. The beam pipe is constructed
of stainless steel withρ = 7.4 × 10−6 Ωm. The real or imaginary part of the resistive-wall
impedance amounts to10.6 Ω at the revolution frequency. In fact, except for space charge,
the impedance of the Main Injector vacuum chamber is|Z‖

0 | . 1 Ω according to the Main
Injector Handbook, and is well below the Keil-Schnell limit.

The Keil-Schnell-like limit for transverse microwave instability is [4]
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where theeffective chromaticityis Sx,y = ξx,y + (n̂ − [νx,y])η, with ξx,y the chromaticity,
n̂ = n + νI

x,y, n a revolution harmonic,νI
x,y and[νx,y] the integral and decimal parts of the

betatron tune. Instability occurs only forslow waveswhen n̂ > [νx,y]. The form factor
Fx,y depends on the transverse particle distribution, about unity for the real part of the
impedance but is rather large for the reactive dominated impedance. Since this is a coasting-
beam theory, it is applicable only when the wavelength of the perturbation is much less
than twice the total bunch length. In the ramp cycle of the Main Injector, this perturbation
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frequency should bef > 83 MHz or n > 1750 corresponding to a bunch area of 0.15 eV-s.
Except around transition, this translates into the stability limits of|Zx,y

1 | . 6.5 MΩ/m. The
transverse impedances at 83 MHz areRe Zx,y

1 = 0.17 andi0.34 MΩ/m, respectively, which
are well below the stability limits. The space charge impedances at injection, however, are
Zx,y

1 = i24.3 and 22.6 MΩ/m, which are above the stability limits. Fortunately, most
of the impedances at injection are space charge, which are reactive and will not drive an
instability.

14.1.3. Coupled-bunch Instability

The resistive-wall impedance can drive the transverse coupled-bunch instability with a
growth rate

1

τx,y
µ

≈ eMIbc

4πνx,yE0
Re Zx,y

1 (νc
x,yω0)F , (14.7)

where the form factor isF ∼ 0.811 if sinusoidal modes are assumed and the instability
is worst at injection. Forνy = 24.415, [νy] = 0.415, νc

x,y = [νx,y] − 1 = −0.585 and
Re Zx,y

1 (νc
yω0) = −18.9 MΩ/m. The growth rate is815 s−1 or growth time1.22 ms or

110 turns. Because the bunch intensity has been increased 5 fold, the growth rate will be 5
times faster. This instability can be damped by operating at a negative chromaticity below
transition and a positive chromaticity above transition. An octupole system and/or a mode
damper will also be helpful.

Coupled-bunch instabilities, longitudinal or transverse, driven by the higher-order modes
of the rf cavities will have growth rates five times faster than before. Passive de-Qing of the
annoying modes as well as the introduction of mode dampers are highly recommended.

14.1.4. Transition Crossing

Just after transition,Z‖
0 is dominated by space charge, which drives the microwave in-

stability untilη is large enough. The growth rate without damping is

1
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The geometric factorg inside(Z
‖
0/n)spch behaves roughly likeg(n) ≈ g0/(1 + n/n1/2),

whereg0 = 1 + 2 ln(b/a) is the familiar geometric factor at low frequencies and the
half-value revolution harmonic is roughly given byn1/2 = γR(1.60/b + 0.52/a). From
Eq. (14.8), the growth rate increases linearly with frequency and exhibits a maximum at
nmax = n1/2/

√
3 or 88.6 GHz, where the vertical half beam-pipe radiusb = 2.54 cm and

average beam radiusa = 6.13 mm have been assumed. Notice that at beam-pipe cutoff
frequencies, the seeds are big but the growth rate is slow. However, at high frequencies, the
seeds coming from Schottky noise are small, but the growth rate is huge. The total growth
is given byexp

[∫
dt (growth rate)

]
, where the integration is performed from the time

transition is crossed to the moment whenη is large enough to regain stability. Hardt [5]
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postulated thatbeam blowupoccurs when̂c & 1, where
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γT is the transition gamma,kb 1
2

= n1/2∆̂φ/(πh) is the bunch mode atn1/2 with ∆̂φ being
the half bunch width in rf radians, andh = 588 is the rf harmonic. It is important to point
out that blowup in this context implies violent breakup of the bunch and there will be a
modest increase in bunch area even if there is no blowup. Figure 14.3 shows the variation
of the parameter̂c with the bunch area at various bunch intensities and ramp rates. At
present, transition is crossed atγ̇ = 240 s−1. The plot shows that there should be no blowup
when the bunch area is larger than 0.081 eV-s at the present intensity ofNb = 6× 1010 per
bunch. For the 5-fold upgraded bunch intensity, however, it appears that the bunch area has
to be increased to larger than 0.29 eV-s to avoid a blowup. Also shown are the situations
when a transition jump is installed with 10, 15, and 20 times the present crossing rate. The
prediction is that the situation will be the same as present if the crossing rate is increased
by 15.8 fold.

Figure 14.3. Possible negative-mass blowup of a bunch while crossing transition for the
present intensity of6 × 1010 at the present rate ofγ̇ = 240 s−1. Also shown are possible
blowups at the upgraded intensity of30×1010 crossing transition at 1, 10, 15, and 20 times
the present rate.

14 - 5



14.2. Longitudinal Dynamics

Ioanis Kourbanis, James MacLachlan, and Zubao Qian

To operate the MI at1.5 × 1014 protons per pulse will require the suppression of many
of the known instability types, some in several modes. Detailed threshold estimates and
designs for damping will be required in a comprehensive upgrade design. The following
remarks take a qualitative first step, identifying problem areas and promising cures. At
this conceptual stage, experience with existing machines like the Brookhaven AGS, the
Los Alamos Proton Storage Ring, or Rutherford Laboratory’s ISIS provides a more useful
foundation for vetting proposed performance specifications than that provided by existing
calculations for the MI, despite the very different nature of these machines. Because the
worst effects of beam current are usually manifest at low energy, these exemplars are very
relevant, and their variety lends an element of generality to conclusions derived from them.

14.2.1. Injection

The 8 GeV linac and the rapid cycling synchrotron versions of the Proton Driver present
the MI with entirely different injection conditions. The transfer from the synchrotron is
intended to be synchronous and matched both longitudinally and transversely. The pro-
cedures and difficulties are much the same as for the present Booster with, of course, the
major complication of five times the charge per bunch. Injection from the linac has nu-
merous variants involving choices on injection time, transverse and longitudinal painting,
upstream debunching, etc.

The predicted longitudinal distribution from the PD2 synchrotron has been taken di-
rectly from the calculation for the ramp called minimumṗ in Ch. 4 Sec. 2 without inductive
inserts. The longitudinal matching goes from a 90 kV bucket (0.78 eVs) to a 1 MV bucket
in the MI. The contours in the low voltage PD bucket are strongly distorted by collective
defocusing, whereas the waiting MI buckets are of course normal. The resulting shape os-
cillation of the bunches results in a few percent emittance growth, but it is not significant
compared to that in negotiating transition. The injection and acceleration calculations are
a development of studies going back several years, differing principally in the new initial
distribution. Although arguably not optimized for the PD, they are well worked out from
earlier needs, and they demonstrate nicely that this mode of operation naturally fits the
established pattern. However, the bunches from the PD synchrotron are incredibly bright
and need to be diluted before transition. This controlled blowup has not yet been modeled,
however. For consideration of transition, the tracking is started afresh with an elliptical
bunch of appropriate emittance.
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For injection from the linac, the most favorable assumptions are that painting estab-
lishes about the transverse emittance wanted at the end, which is then accelerated with
little dilution; the longitudinal painting should provide an approximately uniform momen-
tum distribution with a width set to give the desired longitudinal emittance after adiabatic
capture. There is a MI specification that the longitudinal acceptance is 0.5 eVs, a number
set by momentum aperture in a classic transition crossing. However, this number is re-
ally more like 0.4 eVs because of nonlinearities, and the relevant value when aγT -jump is
used is not available. For 0.1 eVs bunches, the full width injected energy spread should be
5.3 MeV, only a bit bigger than one would get naturally from the linac without debunch-
ing. A classic adiabatic capture (adiabaticity 0.22) takes only 80 ms. However, 0.1 eVs
bunches of3× 1011 will not get through a MI acceleration cycle without uncontrolled, and
presumably unnecessarily large, emittance growth. What has been modeled so far uses a
less textbook approach and looks like a perfectly reasonable starting point. Namely, the
linac beam is taken without debunching. The rf bucket is turned on at the end of multiturn
injection with a bucket height about three times the batch height. Naturally this leads to
emittance dilution, to about 0.3 eVs in this case, but that is not so bad a value for the rest
of the cycle, and the rf can be turned up to 1.5 MV in only 3.5 ms. Not only does this rapid
turn on save time, but it quickly establishes some rf focusing to counter the space charge
disruption of the bunch. The space charge force helps to smooth out the filamented distri-
bution. The same trials of the full cycle made for the synchronous injection case were also
made using this sudden-capture distribution. The fast voltage increase results in sparse tails
in the energy distribution which get scraped at transition. If this 0.03 % scraping were the
actual loss, it would be acceptable (and remarkable). However, the claim for this calcula-
tion is not that it exemplifies the optimum treatment of the problem; rather it is preliminary
evidence that it will be possible to get adequate capture with some standard precautions.

If a technique is found for 53 MHz beam chopping somewhere before or along the
8 GeV linac, it is then possible to inject synchronously from the linac. Although this would
be a very desirable development, there has been no effort to estimate the effectiveness; there
exists no satisfactory scheme for such fast chopping. Sophisticated chopping and painting
will be useful to consider as a standard for judging less elaborate expedients, but it is not
evident that such an approach will be required ultimately.

14.2.2. Transition crossing

It is possible to summarize in a few words much of what is observed, expected from analy-
sis, and simulated for transition crossing in the MI. The longitudinal acceptance of the MI
is set by two limits that converge with increasing intensity,viz., negative mass instability
limits the bunch size from below and nonlinear motion limits the bunch size from above.
The upper limit is fairly stringent even for single particle motion but also has current de-
pendence arising from increasing shape mismatch. The upper limit is about 0.4 eVs and is
dropping slowly at the design intensity. The lower limit is nearly 0.3 eVs and is increas-
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ing rapidly. The usual assessment has been that the MI should work at or near its design
intensity without special measures for crossing transition but that any significant intensity
improvement would surely require some hardware upgrade. Alternative schemes have been
considered, but the now well-established solution of a fastγT -jump responds to the widest
range of transition region pathologies and has proved robust. Documentation supporting
these assertions is spread across a number of papers from Fermilab and elsewhere; however,
see Ref. [6] in particular.

The PD synchrotron does not pass through transition; therefore its bunches can be far
brighter than MI bunches above transition, which are subject to negative mass instability
(NMI). The bunches from the PD are just a bit over 0.1 eVs. The tolerable emittance
for MI is estimated to be about 0.4 eVs using the analysis of W. Hardt [5]. Although
Hardt’s treatment includes several approximations, the threshold depends so strongly on
emittance,∝ ε−3, that minimum emittance should be well approximated. Future modeling
can provide an independent estimate. The tactics of how the bunch dilution should occur is
somewhat involved; possibly proceeding with the small bunch and accepting the disruption
at transition will give as small a final emittance as any other approach. However, tracking
models of NMI are extremely demanding of computer resources and have not yet been
well validated. Thus, for this report one should accept that emittance will grow and take
the Hardt estimate as a reasonable minimum.

Figure 14.4 shows a bunch of 0.35 eVs that has been accelerated from 8 GeV to 42 GeV
on aṗmax = 300 GeV/c/s ramp. The model includes the perfectly conducting wall impe-
dance and a broadbandZ‖/n = 3 Ohm; 14.4 (a) is a result without aγT -jump and 14.4
(b) shows the effect of the jump. The jump consists of two units change inγT over 0.5 ms,
thirteen times the maximum ramp rate. Both examples show filamentation resulting from
imperfect shape matching; the problem is less serious in the jump case and may be open to
improvement by careful matching after the jump. The normal crossing case shows a char-
acteristic second tail resulting from the nonadiabatic motion, which can not be remedied
by post-transition matching. The preceding paragraph indicates 0.35 eVs may not be quite
large enough to avoid NMI. However, at the givenṗ, there is not bucket area for a much
larger bunch. Even with aγT -jump, the same sorts of shape matching problems that plague
normal transition crossing exist at a reduced level and lead to losses without some margin
in bucket area. Thus, by pushing for a factor of five in intensity one gets back to the same
sort of squeeze that exists for the present MI at design intensity. Table 14.1 gives results
for final rms emittance and percentage beam loss for a number of combinations of initial
emittance,γT -jump, and inductive insert. The insert, chosen to cancel the net imaginary
impedance at transition, does have a marginal benefit, evident in the table. However, the
small gains may not be worth the extra complication. TheγT -jump does permit 0.4 eVs
bunches to cross transition without loss; it appears, therefore, that NMI should not prevent
operation of the MI at1.5 × 1014 protons/cycle.
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(a) normal transition crossing (b) transition crossing with a jump of two units inγT

ε` = 0.101 eVs (rms) ε` = 0.077 eVs (rms)

Figure 14.4. MI bunches at 42 GeV on a 300 GeV/c/s ramp. The bunches were 0.35 eVs
elliptical distributions (0.069 rms) at injection.

14.2.3. Extraction

For injection into the Tevatron or for most Sec. counter experiments, the main concern is
control of bunch-to-bunch regularity and duty factor. The likely difficulties include coupled
bunch instability and fundamental beam loading. Extraction losses will also depend on how
broad and regular the final momentum spread is. However, such questions are transverse
dynamics in first order with momentum distribution as a possible complicating factor. They
may be expected to be far more challenging with five times the current to handle, but they
are familiar at some level.

Table 14.1.RMS emittance and percentage survival for 300 GeV/s MI ramps with/without
γT -jump and with/without inductive insert to cancel imaginary impedance at transition. The
effect of negative mass isnot included.

Initial ε` [eVs]
100% rms γT -jump L insert Final rmsε` Loss %
0.30 0.060 N Y 0.084 0.09

Y Y 0.066 0.00
0.35 0.069 N N 0.101 0.74

N Y 0.095 0.40
Y N 0.077 0.00
Y Y 0.078 0.00

0.38 0.075 N N 0.104 1.39
N Y 0.102 0.87
Y N 0.084 0.00

0.40 0.079 N N 0.107 1.94
N Y 0.106 1.31
Y Y 0.089 0.00
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PD2 is foremost an injector for the MI which is the final stage of a proton driver acceler-
ator chain. As in the original Proton Driver study, the ability to deliver very narrow bunches
has important potential for such applications as aν factory. Although not designed to pro-
ton driver specifications, the MI does have a large momentum aperture — 2 % nominal,
1.6 % present operational. Therefore, it will be possible to get very short bunches by bunch
rotation. The bunch emittance at 120 GeV is about 0.44 eVs. If the rf voltage is dropped in
the final parabola of the ramp to maintain a bucket area near 0.75 eVs, it will reach 150 kV
in the last 100µs or so. Jumping the voltage as quickly as possible to 4.4 MV results
in a quarter synchrotron oscillation during that time to a full width of 1.5 ns and energy
spread of±250 MeV. The bucket height is±510 MeV, however, so the rotation is rather
linear. The final momentum spread is only about±0.2 % . An energy-azimuth phase plane
plot of the rotated bunch is shown in Fig. 14.5. The result is significantly cleaner than the
8 GeV result shown in Fig. 4.9 because the bunch height to bucket height ratio is lower and
because∆p/p is much lower.

At minimum bunch width, the collective voltage from space charge and 5 OhmZ‖/n is
about 0.65 MV, a warning on the need to control all sorts of sources of longitudinal coupling
impedance. It is, however, small compared to the 20 MV induced at that time by the beam
in the MI accelerating cavities. The bunch rotation period presents by far the greatest
beam loading problem. If the fundamental beam loading correction systems have both the
necessary reserve current and effective gain approaching 40 dB, the synchronous phase
wander during the rotation is estimated to be acceptable. This wander was not however,
included in the the modeling which resulted in Fig. 14.5. The character of this particular
problem depends strongly on whether there is a full or partial circumferential filling.

14.2.4. Stability

There are existing treatments of MI stability issues from the design studies for the MI [7, 8].
Operational experience to date has added little new information. The references include
most of the available threshold and impedance estimates plus speculations on the reasons
for considerable discrepancies between some of them and available operating experience.
From them one can conclude that quintupling MI beam current will encounter several sta-
bility problems, but it is not clear exactly which ones. For the longitudinal degree of free-
dom addressed here, it is abundantly clear that both passive damping of higher order cavity
modes and bunch-by-bunch dipole mode damping or multichannel narrow band damping
must be pursued vigorously. The narrow band approach has attraction for the possibility of
using very similar hardware for quadrupole mode damping should that need arise.
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Figure 14.5.The phase space distribution of a bunch rotated with 4.4 MV of rf at the end
of the ramp. The horizontal axis on this plot is just under 19 ns long; the units are first
harmonic phase in degrees and energy in MeV. The momentum spread is about±0.2 %.
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